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Overview

This is just an overview, not a replacement for the 
papers themselves

● P2414R4 “Pointer lifetime-end zap proposed solutions”
● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2414r4.pdf

● P3347R0 Invalid/Prospective Pointer Operations 
● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3347r0.pdf 
● Based on Davis Herring’s P2434R1 “Nondeterministic pointer provenance”

● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html
● P3064R2 “How to Avoid OOTA Without Really Trying”

● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3064r2.pdf 
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Overview

● Lifetime-end pointer zap
● Out-of-thin-air (OOTA) cycles
● Where are we on OOTA?
● Leverage restrictions:

– Real computer systems
– Speculate properly or not at all
– Existing restrictions for volatile atomics
– No invention or repurposing of atomic loads
– Tooling looks at object code

● Future directions
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Lifetime-End Pointer Zap
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Problem Restatement (C11, 1/2)
struct node_t* _Atomic top;

void list_push(value_t v) 
{
  struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));
  Struct node_t *next = atomic_load(&top);

  set_value(newnode, v);
  do {
    set_next(newnode, next);
    // newnode’s next pointer may have become invalid
  } while (!atomic_compare_exchange_weak(&top, &next, newnode));
}
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Problem Restatement (C11, 2/2)

void list_pop_all()
{
  struct node_t *p = atomic_exchange(&top, NULL);

  while (p) {
    struct node_t *next = p->next;
        
    foo(p);
    free(p);
    p = next;
  }
}
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Problem Illustration (C11)

top A @ 1Initial State
Freelist
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top A @ 1Initial State

top A @ 1Push B#1 B @ 2

Freelist
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
OK in assembly language!!!

LIFO stack with pop-all is ABA tolerant
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This is Real and Isn’t Going Away

● LIFO stack described by Treiber in 1986
– Written in IBM BAL, avoiding issues with compilers

● LIFO stack alluded to in early 1970s
● LIFO stack implemented in Rust library

– Though with pop(), not pop_all().
● Used in heavily production in many languages
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OK, OK, What is New Since 2023???
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C and C++: Pointer Provenance

● Pointers contain bits and also “provenance”
– Compiler may assume that pointers from two different 

calls to the allocator are unequal
● Provenance may be erased

– Conversion to integer, I/O, optimization frontiers
● Davis Herring C++ proposal (P2434R1) provides 

“angelic provenance”
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C++: Angelic Provenance

● Davis Herring P2434R1 (“Nondeterministic pointer 
provenance”) restricts provenance restoration
– Conversion from integer, I/O, optimization frontiers
– Pointer provenance remains “provisional” until 

comparison or dereference
– At which point, the compiler must choose provenance 

(if any) that allows the program to be well-formed
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C++: Angelic Provenance

● Davis Herring P2434R1 (“Nondeterministic pointer 
provenance”) restricts provenance restoration
– Conversion from integer, I/O, optimization frontiers
– Pointer provenance remains “provisional” until 

comparison or dereference
– At which point, the compiler must choose provenance 

(if any) that allows the program to be well-formedNot enough for LIFO stack...
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer” needs
provenance from “Push C”
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Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

No conversion, I/O, or optimization

frontier, but useful definitions

“Zombie Pointer” needs
provenance from “Push C”



22

What Else Is Needed?
● P2414R4 (“Pointer lifetime-end zap proposed solutions”): Provisional provenance 

results from:
– Conversions to/from atomic<T *>

● Including old pointer referenced by successful CAS operations
– usable_ptr<T>
– make_ptr_prospective() “identity” function
– Volatile accesses involving pointers

● P3347R0 (“Pointer lifetime-end zap proposed solutions: Tighten IDB for invalid and 
prospective pointers”)
– Glvalue-to-rvalue conversions from invalid pointers must produce value bits consistent with 

those of the lvalue
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What Else Is Needed?
● P2414R4 (“Pointer lifetime-end zap proposed solutions”): Provisional provenance 

results from:
– Conversions to/from atomic<T *>

● Including old pointer in successful CAS operations
– usable_ptr<T>
– make_ptr_prospective() “identity” function
– Volatile accesses involving pointers

● P3347R0 (“Pointer lifetime-end zap proposed solutions: Tighten IDB for invalid and 
prospective pointers”)
– Glvalue-to-rvalue conversions from invalid pointers must produce value bits consistent with 

those of the lvalue

Not all that much!!!
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Status in C++ Committee

● All progressing through C++ committee:
– P2414R4 “Pointer lifetime-end zap proposed solutions”
– P3347R0 Invalid/Prospective Pointer Operations 
– Davis Herring’s P2434R1 “Nondeterministic pointer 

provenance”
● No guarantees, but best progress thus far
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Pointer-Zap Discussion
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OOTA Cycles
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OOTA Cycles

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Semantic
data dependency

Reads-From
External

Relaxed load or store denoted by “=rlx”
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OOTA Cycles

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Why “external” in reads-from external?

Semantic
data dependency
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OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

rfi
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OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

r1 =rlx X;
Z =rlx r1;
Y =rlx r1;
r2 = r1;
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OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

r1 =rlx X;
Z =rlx r1;
Y =rlx r1;
r2 = r1;

Compiler eliminated the read from Y so that
the store to Z can now occur before the store to Y
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Compiler eliminated the read from Y so that
the store to Z can now occur before the store to Y

OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

r1 =rlx X;
Z =rlx r1;
Y =rlx r1;
r2 = r1;

See Appendix D.3 (“Why rfe Instead of Tried-And-True rf?”) of P3064R1

Hence “external” in reads-from external
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OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External Semantic

data dependency
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OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Not seen in “real life
”

Reads-From
External Semantic

data dependency
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OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Not seen in “real life
”

Why???

Reads-From
External Semantic

data dependency
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Where Are We on OOTA?
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Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External



38

Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time
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Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

Instruction execution
takes tim

e
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Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

Instruction execution
takes tim

e
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st
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n 
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To form an OOTA cycle, at least one step must go backwards in time!!!
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Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

Instruction execution
takes tim

e
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st
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n

ta
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s 
tim

e

To form an OOTA cycle, at least one step must go backwards in time!!!

OOTA cycle cannot fo
rm

(on real compiler-based systems)
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Where Are We on OOTA?

● Generalized “OOTA Cycle” (Section 2.2.2)
● Fundamental property of semantic dependency 

(Sections 5.3 and 6.1)
● Demonstrate OOTA-freedom under restrictions 

(Sections 6.2 and 6.3 for demonstration, 4.4 for 
restrictions)
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Leverage Restrictions
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Real Computer Systems
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Real Computer Systems: Store-to-Load
● Store-to-load links are temporal*

* The event that is logically first must happen before the other event in real-world time
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of store to end of load
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Real Computer Systems: Store-to-Load

● Store-to-load links are temporal: HW view
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Real Computer Systems: Store-to-Store
● Store-to-store links are atemporal*

* The event which is logically first can happen after the other event in real-world time
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of winning store to end of store
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Real Computer Systems: Store-to-Store

● Store-to-store links are atemporal: HW view

“co” is “modification order” in the C++ memory model
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Real Computer Systems: Load-to-Store

● Load-to-store links are atemporal

Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of load to end of store
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Real Computer Systems: Load-to-Store

● Load-to-store links are atemporal: HW view

“fr” is “from reads”, which connects a read to a write that happened too late to affect the value loaded
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Real Computer Systems: Summary

● Load-to-store links: Atemporal
● Store-to-store links: Atemporal
● Store-to-load links: Temporal

– And thus have ordering properties on the cheap

See Appendix A (“Interthread Communications”) of P3064R1
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Speculate Properly or Not At All
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Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;atemporal!!!



54

Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;atemporal!!!

Also improper!!!

Don’t just guess!  Guess and then check!!!
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Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;
r3 =rlx X; // 1, not 2!
if (r1 != r3)
    r2 = somefunc(r3);
Y = r2;

temporal!!!
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Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;
r3 =rlx X; // 1, not 2!
if (r1 != r3)
    r2 = somefunc(r3);
Y = r2;

temporal!!!

Speculation must be checked against the 

value from an actual load!!!

See Section 5.2 (“Instruction Ordering”) and Section 7.1 (“Hardware Architecture and Design”) of P3064R1
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Existing Restrictions on Volatile Atomics
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Existing Restrictions on Volatile Atomics

● Compiler may not:
– Reorder accesses
– Invent, duplicate, or repurpose accesses
– Merge or fuse accesses
– Omit accesses

● Relax restrictions for non-volatile atomics?
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No Atomic-Load Invention/Repurposing
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No Atomic-Load Invention

● Guaranteed perfect square for small X:
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are invented!!!
int r0 =rlx x;
int invented =rlx x;
int r1 = r0 * r0 + 2 * invented + 1;
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No Atomic-Load Invention

● Guaranteed perfect square for small X:
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are invented!!!
int r0 =rlx x;
int invented =rlx x;
int r1 = r0 * r0 + 2 * invented + 1;
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No Atomic-Load Repurposing

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are repurposed!!!
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r2 + 1;
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No Atomic-Load Repurposing

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are repurposed!!!
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r2 + 1;
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Instead, Merge the Atomic Loads

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● And that guarantee is maintained for merged loads:
r0 =rlx x;
do_something(r0); // No synchronization or stores to x
int r1 = r0 * r0 + 2 * r0 + 1;
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Instead, Merge the Atomic Loads

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● And that guarantee is maintained for merged loads:
r0 =rlx x;
do_something(r0); // No synchronization or stores to x
int r1 = r0 * r0 + 2 * r0 + 1;If do_something() contains synchronization, 

then must keep both atomic loads
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Atomic Loads and Memory Ordering

See Section 7.2 (“Constraints of the Standard”) and Appendix D.4 (“Inventing Atomic Loads”), Listing 22 of P3064R1

r1 =rlx X;

r2 =rlx Y;

Z =rlx (r1 == r2);

X =rlx 1;
sdep?

Note: X, Y, and Z boolean and initially zero
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Atomic Loads and Memory Ordering

Inventing atomic load likely also invents hundreds-of-cycles cache miss!!!

r1a =rlx X;

r1b =rlx X; // Invented load

If (r1a != r1b) {

    Z =rlx 1;

    r2 =rlx Y;

} else {

    r2 =rlx Y;

    Z =rlx (r1b == r2);

}

X =rlx 1;

sdep!

Note: X, Y, and Z boolean and initially zero
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Atomic Loads and Memory Ordering

See Appendix D.4 (“Inventing Atomic Loads”), Listing 23 of P3064R1

r1a =rlx X;

r1b =rlx X; // Invented load

If (r1a != r1b) {

    Z =rlx 1;

    r2 =rlx Y;

} else {

    r2 =rlx Y;

    Z =rlx (r1b == r2);

}

X =rlx 1;

sdep!

Note: X, Y, and Z boolean and initially zero
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Non-Volatile Atomics Optimizations?

● Looking only at relaxed operations:
– Reorder loads/stores from/to different objects
– Merge back-to-back loads to same object
– Drop loads whose values are unused
– Discard first of back-to-back stores to same object
– Fuse loads from (or stores to) adjacent objects if this results in 

a machine-word-sized/aligned access
– But no invented, duplicated, or repurposed loads!!!
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Tooling Looks at Object Code

See Section 7.3 (“Semantic Dependencies and Tooling”) and Appendix C (“But What About Tooling?”), P3064R1
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OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External Semantic

data dependency
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OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Temporal

Temporal?
Semantic dependency?

Semantic
data dependency
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OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Temporal

Temporal?
Semantic dependency?

Semantic
data dependency

If each step in an OOTA cycle is temporal,

then that cycle cannot happen in the real

world because no step could happen firs
t!
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Semantic Dependencies are Tricky

● At source-code level, semantic dependencies:
– Are not strict functions of source code (Section 2)
– Can be many-to-one (Section 2 and Appendix D.2)
– Depend on partially defined executions (Section 3)
– Depend on compilers and their users (Section 4)

● Current paper assumes local analysis (no global 
cross-thread optimizations)
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Semantic Dependencies in Code?

● Semantic dependencies are temporal:
– Instructions take time to execute
– Speculation must be checked against actual load
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Semantic Dependencies in Code?

● Semantic dependencies are temporal:
– Instructions take time to execute
– Speculation must be checked against actual load

● Compiler optimizations break dependencies:
– But HW memory models respect dependencies
– Thus look at object code (seL4 verification approach)
– Also look at other compiler-produced artifacts

See Sections 5-7, P3064R1
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Semantic Dependencies in Code?

● Semantic dependencies are temporal:
– Instructions take time to execute
– Speculation must be checked against actual load

● Compiler optimizations break dependencies:
– But HW memory models respect dependencies
– Thus look at object code (seL4 verification approach)
– Also look at other compiler-produced artifacts

See Sections 5-7, P3064R1

If compiler optimizes dependency away, it 

was not semantic.  Otherwise, executing 

dependency’s code will ta
ke time.
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Where Are We on OOTA? (Reprise)

● Generalized “OOTA Cycle” (Section 2.2.2)
● Fundamental property of semantic dependency 

(Sections 5.3 and 6.1)
● Demonstrate OOTA-freedom under restrictions (Sections 

6.2 and 6.3 for demonstration, 4.4 for restrictions)
– The main restriction is: No invented, duplicated, or repurposed 

atomic loads
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Future Directions

● From compilers to (some) JITs, interpreters, and link-
time optimizations (LTO)

● Compilers doing (some) global analysis given volatile 
atomics

● Identify absolute semantic dependencies inherent in 
source code

● Non-shared-memory communication



80

Discussion
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