

Lifetime-End Pointer Zap &
How to Avoid OOTA Without Really Trying

© 2024 Meta Platforms

Alan Stern, Rowland Institute at Harvard
Paul E. McKenney, Meta Platforms Kernel Team
Michael Wong, Codeplay
Maged Michael
Kangrejos, Copenhagen, Denmark, September 8, 2024

2

Overview

This is just an overview, not a replacement for the
papers themselves

● P2414R4 “Pointer lifetime-end zap proposed solutions”
● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2414r4.pdf

● P3347R0 Invalid/Prospective Pointer Operations
● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3347r0.pdf
● Based on Davis Herring’s P2434R1 “Nondeterministic pointer provenance”

● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html
● P3064R2 “How to Avoid OOTA Without Really Trying”

● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3064r2.pdf

3

Overview

● Lifetime-end pointer zap
● Out-of-thin-air (OOTA) cycles
● Where are we on OOTA?
● Leverage restrictions:

– Real computer systems
– Speculate properly or not at all
– Existing restrictions for volatile atomics
– No invention or repurposing of atomic loads
– Tooling looks at object code

● Future directions

4

Lifetime-End Pointer Zap

5

Problem Restatement (C11, 1/2)
struct node_t* _Atomic top;

void list_push(value_t v)
{
 struct node_t *newnode = (struct node_t *) malloc(sizeof(*newnode));
 Struct node_t *next = atomic_load(&top);

 set_value(newnode, v);
 do {
 set_next(newnode, next);
 // newnode’s next pointer may have become invalid
 } while (!atomic_compare_exchange_weak(&top, &next, newnode));
}

6

Problem Restatement (C11, 2/2)

void list_pop_all()
{
 struct node_t *p = atomic_exchange(&top, NULL);

 while (p) {
 struct node_t *next = p->next;

 foo(p);
 free(p);
 p = next;
 }
}

7

Problem Illustration (C11)

top A @ 1Initial State
Freelist

8

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

Freelist

9

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

Freelist

10

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

Freelist

11

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

12

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”

13

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
OK in assembly language!!!

14

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer”
OK in assembly language!!!

LIFO stack with pop-all is ABA tolerant

15

This is Real and Isn’t Going Away

● LIFO stack described by Treiber in 1986
– Written in IBM BAL, avoiding issues with compilers

● LIFO stack alluded to in early 1970s
● LIFO stack implemented in Rust library

– Though with pop(), not pop_all().
● Used in heavily production in many languages

16

OK, OK, What is New Since 2023???

17

C and C++: Pointer Provenance

● Pointers contain bits and also “provenance”
– Compiler may assume that pointers from two different

calls to the allocator are unequal
● Provenance may be erased

– Conversion to integer, I/O, optimization frontiers
● Davis Herring C++ proposal (P2434R1) provides

“angelic provenance”

18

C++: Angelic Provenance

● Davis Herring P2434R1 (“Nondeterministic pointer
provenance”) restricts provenance restoration
– Conversion from integer, I/O, optimization frontiers
– Pointer provenance remains “provisional” until

comparison or dereference
– At which point, the compiler must choose provenance

(if any) that allows the program to be well-formed

19

C++: Angelic Provenance

● Davis Herring P2434R1 (“Nondeterministic pointer
provenance”) restricts provenance restoration
– Conversion from integer, I/O, optimization frontiers
– Pointer provenance remains “provisional” until

comparison or dereference
– At which point, the compiler must choose provenance

(if any) that allows the program to be well-formedNot enough for LIFO stack...

20

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

“Zombie Pointer” needs
provenance from “Push C”

21

Problem Illustration (C11)

top A @ 1Initial State

top A @ 1Push B#1 B @ 2

top A @ 1Pop all B @ 2

top C @ 1Push C B @ 2

top C @ 1Push B#2 B @ 2

Freelist

No conversion, I/O, or optimization

frontier, but useful definitions

“Zombie Pointer” needs
provenance from “Push C”

22

What Else Is Needed?
● P2414R4 (“Pointer lifetime-end zap proposed solutions”): Provisional provenance

results from:
– Conversions to/from atomic<T *>

● Including old pointer referenced by successful CAS operations
– usable_ptr<T>
– make_ptr_prospective() “identity” function
– Volatile accesses involving pointers

● P3347R0 (“Pointer lifetime-end zap proposed solutions: Tighten IDB for invalid and
prospective pointers”)
– Glvalue-to-rvalue conversions from invalid pointers must produce value bits consistent with

those of the lvalue

23

What Else Is Needed?
● P2414R4 (“Pointer lifetime-end zap proposed solutions”): Provisional provenance

results from:
– Conversions to/from atomic<T *>

● Including old pointer in successful CAS operations
– usable_ptr<T>
– make_ptr_prospective() “identity” function
– Volatile accesses involving pointers

● P3347R0 (“Pointer lifetime-end zap proposed solutions: Tighten IDB for invalid and
prospective pointers”)
– Glvalue-to-rvalue conversions from invalid pointers must produce value bits consistent with

those of the lvalue

Not all that much!!!

24

Status in C++ Committee

● All progressing through C++ committee:
– P2414R4 “Pointer lifetime-end zap proposed solutions”
– P3347R0 Invalid/Prospective Pointer Operations
– Davis Herring’s P2434R1 “Nondeterministic pointer

provenance”
● No guarantees, but best progress thus far

25

Pointer-Zap Discussion

26

OOTA Cycles

27

OOTA Cycles

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Semantic
data dependency

Reads-From
External

Relaxed load or store denoted by “=rlx”

28

OOTA Cycles

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Why “external” in reads-from external?

Semantic
data dependency

29

OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

rfi

30

OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

r1 =rlx X;
Z =rlx r1;
Y =rlx r1;
r2 = r1;

31

OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

r1 =rlx X;
Z =rlx r1;
Y =rlx r1;
r2 = r1;

Compiler eliminated the read from Y so that
the store to Z can now occur before the store to Y

32

Compiler eliminated the read from Y so that
the store to Z can now occur before the store to Y

OOTA Cycles: Reads-From Internal

r1 =rlx X;
Y =rlx r1;
r2 =rlx Y;
Z =rlx r2;

r1 =rlx X;
Z =rlx r1;
Y =rlx r1;
r2 = r1;

See Appendix D.3 (“Why rfe Instead of Tried-And-True rf?”) of P3064R1

Hence “external” in reads-from external

33

OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External Semantic

data dependency

34

OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Not seen in “real life
”

Reads-From
External Semantic

data dependency

35

OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Not seen in “real life
”

Why???

Reads-From
External Semantic

data dependency

36

Where Are We on OOTA?

37

Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

38

Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

39

Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

Instruction execution
takes tim

e
In

st
ru

ct
io

n
ex

ec
ut

io
n

ta
ke

s
tim

e

40

Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

Instruction execution
takes tim

e
In

st
ru

ct
io

n
ex

ec
ut

io
n

ta
ke

s
tim

e

To form an OOTA cycle, at least one step must go backwards in time!!!

41

Where Are We on OOTA? (TL;DR)

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Reads take time

Instruction execution
takes tim

e
In

st
ru

ct
io

n
ex

ec
ut

io
n

ta
ke

s
tim

e

To form an OOTA cycle, at least one step must go backwards in time!!!

OOTA cycle cannot fo
rm

(on real compiler-based systems)

42

Where Are We on OOTA?

● Generalized “OOTA Cycle” (Section 2.2.2)
● Fundamental property of semantic dependency

(Sections 5.3 and 6.1)
● Demonstrate OOTA-freedom under restrictions

(Sections 6.2 and 6.3 for demonstration, 4.4 for
restrictions)

43

Leverage Restrictions

44

Real Computer Systems

45

Real Computer Systems: Store-to-Load
● Store-to-load links are temporal*

* The event that is logically first must happen before the other event in real-world time
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of store to end of load

46

Real Computer Systems: Store-to-Load

● Store-to-load links are temporal: HW view

47

Real Computer Systems: Store-to-Store
● Store-to-store links are atemporal*

* The event which is logically first can happen after the other event in real-world time
Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of winning store to end of store

48

Real Computer Systems: Store-to-Store

● Store-to-store links are atemporal: HW view

“co” is “modification order” in the C++ memory model

49

Real Computer Systems: Load-to-Store

● Load-to-store links are atemporal

Dual-socket Intel(R) Xeon(R) Gold 6138 CPUs @ 2.00 GHz, 80 hardware threads total: Measure beginning of load to end of store

50

Real Computer Systems: Load-to-Store

● Load-to-store links are atemporal: HW view

“fr” is “from reads”, which connects a read to a write that happened too late to affect the value loaded

51

Real Computer Systems: Summary

● Load-to-store links: Atemporal
● Store-to-store links: Atemporal
● Store-to-load links: Temporal

– And thus have ordering properties on the cheap

See Appendix A (“Interthread Communications”) of P3064R1

52

Speculate Properly or Not At All

53

Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;atemporal!!!

54

Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;atemporal!!!

Also improper!!!

Don’t just guess! Guess and then check!!!

55

Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;
r3 =rlx X; // 1, not 2!
if (r1 != r3)
 r2 = somefunc(r3);
Y = r2;

temporal!!!

56

Speculate Properly or Not At All

X =rlx 1;

r1 =speculateX 2;
r2 = somefunc(r1);
Y = r2;
r3 =rlx X; // 1, not 2!
if (r1 != r3)
 r2 = somefunc(r3);
Y = r2;

temporal!!!

Speculation must be checked against the

value from an actual load!!!

See Section 5.2 (“Instruction Ordering”) and Section 7.1 (“Hardware Architecture and Design”) of P3064R1

57

Existing Restrictions on Volatile Atomics

58

Existing Restrictions on Volatile Atomics

● Compiler may not:
– Reorder accesses
– Invent, duplicate, or repurpose accesses
– Merge or fuse accesses
– Omit accesses

● Relax restrictions for non-volatile atomics?

59

No Atomic-Load Invention/Repurposing

60

No Atomic-Load Invention

● Guaranteed perfect square for small X:
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are invented!!!
int r0 =rlx x;
int invented =rlx x;
int r1 = r0 * r0 + 2 * invented + 1;

61

No Atomic-Load Invention

● Guaranteed perfect square for small X:
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are invented!!!
int r0 =rlx x;
int invented =rlx x;
int r1 = r0 * r0 + 2 * invented + 1;

62

No Atomic-Load Repurposing

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are repurposed!!!
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r2 + 1;

63

No Atomic-Load Repurposing

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● But not if atomic loads are repurposed!!!
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r2 + 1;

64

Instead, Merge the Atomic Loads

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● And that guarantee is maintained for merged loads:
r0 =rlx x;
do_something(r0); // No synchronization or stores to x
int r1 = r0 * r0 + 2 * r0 + 1;

65

Instead, Merge the Atomic Loads

● Guaranteed perfect square for small X:
r2 =rlx x;
do_something(r2); // No synchronization or stores to x
int r0 =rlx x;
int r1 = r0 * r0 + 2 * r0 + 1;

● And that guarantee is maintained for merged loads:
r0 =rlx x;
do_something(r0); // No synchronization or stores to x
int r1 = r0 * r0 + 2 * r0 + 1;If do_something() contains synchronization,

then must keep both atomic loads

66

Atomic Loads and Memory Ordering

See Section 7.2 (“Constraints of the Standard”) and Appendix D.4 (“Inventing Atomic Loads”), Listing 22 of P3064R1

r1 =rlx X;

r2 =rlx Y;

Z =rlx (r1 == r2);

X =rlx 1;
sdep?

Note: X, Y, and Z boolean and initially zero

67

Atomic Loads and Memory Ordering

Inventing atomic load likely also invents hundreds-of-cycles cache miss!!!

r1a =rlx X;

r1b =rlx X; // Invented load

If (r1a != r1b) {

 Z =rlx 1;

 r2 =rlx Y;

} else {

 r2 =rlx Y;

 Z =rlx (r1b == r2);

}

X =rlx 1;

sdep!

Note: X, Y, and Z boolean and initially zero

68

Atomic Loads and Memory Ordering

See Appendix D.4 (“Inventing Atomic Loads”), Listing 23 of P3064R1

r1a =rlx X;

r1b =rlx X; // Invented load

If (r1a != r1b) {

 Z =rlx 1;

 r2 =rlx Y;

} else {

 r2 =rlx Y;

 Z =rlx (r1b == r2);

}

X =rlx 1;

sdep!

Note: X, Y, and Z boolean and initially zero

69

Non-Volatile Atomics Optimizations?

● Looking only at relaxed operations:
– Reorder loads/stores from/to different objects
– Merge back-to-back loads to same object
– Drop loads whose values are unused
– Discard first of back-to-back stores to same object
– Fuse loads from (or stores to) adjacent objects if this results in

a machine-word-sized/aligned access
– But no invented, duplicated, or repurposed loads!!!

70

Tooling Looks at Object Code

See Section 7.3 (“Semantic Dependencies and Tooling”) and Appendix C (“But What About Tooling?”), P3064R1

71

OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External Semantic

data dependency

72

OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Temporal

Temporal?
Semantic dependency?

Semantic
data dependency

73

OOTA Cycles, Original Diagram

● Self-satisfying load-buffering cycle, x==y==42

Process 0

r1 =rlx x;
y =rlx r1;

Process 1

r2 =rlx y;
x =rlx r2;

Reads-From
External

Temporal

Temporal?
Semantic dependency?

Semantic
data dependency

If each step in an OOTA cycle is temporal,

then that cycle cannot happen in the real

world because no step could happen firs
t!

74

Semantic Dependencies are Tricky

● At source-code level, semantic dependencies:
– Are not strict functions of source code (Section 2)
– Can be many-to-one (Section 2 and Appendix D.2)
– Depend on partially defined executions (Section 3)
– Depend on compilers and their users (Section 4)

● Current paper assumes local analysis (no global
cross-thread optimizations)

75

Semantic Dependencies in Code?

● Semantic dependencies are temporal:
– Instructions take time to execute
– Speculation must be checked against actual load

76

Semantic Dependencies in Code?

● Semantic dependencies are temporal:
– Instructions take time to execute
– Speculation must be checked against actual load

● Compiler optimizations break dependencies:
– But HW memory models respect dependencies
– Thus look at object code (seL4 verification approach)
– Also look at other compiler-produced artifacts

See Sections 5-7, P3064R1

77

Semantic Dependencies in Code?

● Semantic dependencies are temporal:
– Instructions take time to execute
– Speculation must be checked against actual load

● Compiler optimizations break dependencies:
– But HW memory models respect dependencies
– Thus look at object code (seL4 verification approach)
– Also look at other compiler-produced artifacts

See Sections 5-7, P3064R1

If compiler optimizes dependency away, it

was not semantic. Otherwise, executing

dependency’s code will ta
ke time.

78

Where Are We on OOTA? (Reprise)

● Generalized “OOTA Cycle” (Section 2.2.2)
● Fundamental property of semantic dependency

(Sections 5.3 and 6.1)
● Demonstrate OOTA-freedom under restrictions (Sections

6.2 and 6.3 for demonstration, 4.4 for restrictions)
– The main restriction is: No invented, duplicated, or repurposed

atomic loads

79

Future Directions

● From compilers to (some) JITs, interpreters, and link-
time optimizations (LTO)

● Compilers doing (some) global analysis given volatile
atomics

● Identify absolute semantic dependencies inherent in
source code

● Non-shared-memory communication

80

Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

